GENDER DIFFERENCES IN NEURAL RESPONSES TO WINS & LOSSES IN RISKY DECISIONS: CONSIDERATIONS FOR CONTINGENCY MANAGEMENT TREATMENT

Mary Cazzell, RN, PhD

The University of Texas at Arlington Arlington, Texas

CONTINGENCY MANAGEMENT (Motivational Incentives)

- Based on principle of behavior modification
- Detect target behavior through objective monitoring
- > Tangible reinforcers
- Most effective for initiating drug abstinence <u>BUT</u>....
- > Long-term goals divided into
- short-term steps

CONTINGENCY MANAGEMENT Target Behaviors

- Abstinence from drugs/tobacco/alcohol
 reduced drug use
- Therapy attendance and retention
- Treatment plans
- Medication adherence
- > Improved outcomes:
 - marijuana
 - > cigarettes
 - alcohol
 opioids
 - benzodiazepines
 - > polydrug use

CONTINGENCY MANAGEMENT

Types of Incentives/Reinforcers:

- > Tangible
 - ➤ cash > gift certificates/ vouchers/ tokens
 - ➤ retail items
 - fishbowl (intermittent reinforcer)
- Social
 - \succ social recognition
 - ➤ special privileges

Novel and Innovative Applications

Earned salary as contingent benef

CONTINGENCY MANAGEMENT (Age, Gender, Diagnoses)

Effectiveness of CM:

Short-term abstinence from cigarette smoking in adolescents

> Research on 78 cocaine-abusing mid-adult methadone maintenance clients (53 females) > Research study with large sample size and cohorts of young, middle, and older

cocaine-dependent adults

> Benefits: retention and longest duration of abstinence > Older adults improved less from CM (62%) females)

3

GENDER DIFFERENCES: What Is Known

> Females myelinate PFC earlier

Different PFC recruitment during

task (Schweinsburg, A.D., Nagel, B.J., Tapert, S.F., 2005. fMRI reveals alteration of spatial working memory networks across adolescence. J Int Neuropsychol Soc 11, 631-644)

Gender: strong predictor for risk tolerance

>Females: more risk aversion ► Males: more financial risks (Figner, B., Weber, E.U., 2011. Who takes risks when and why?: Determinants of risk Psychol Sci 20, 211-216.) of risk taking. Cu

GENDER DIFFERENCES: What Is Known

Non-invasive transcranial direct current stimulation (tDCS):

(Fecteau, S., Pascul-Loone, A., Zald, D. H., Laguori, P., Théoret, H., Boggio, P. S., Fregni, F., 2007. Activation of prefrontal cortex by transcrania direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci 27(23), 6212-6218.)

Risk aversion = upregulation of activity in bilateral DLPFC regions

Low-frequency repetitive transcranial

magnetic stimulation (rTMS):

(Knoch, D., Gianuti, L. R., Pascual-Leone, A., Treyer, V., Regard, M., Hohmann, M., Brugger, P., 2006. Disruption of right performatic certs: by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci 26, 6469-6472.)

- Male only study
- > Reduced inhibitory control
- > Increased risk decision-making
- Suppression of right DLPFC activity

Find prefrontal correlates of risk decisions (wins/losses) in adults

≻Identify gender differences in neural correlates of wins vs. losses

>Demonstrate feasibility of optical imaging in risk decision research

>Determine appropriate sample size for power in optical imaging research

BACKGROUND/SIGNIFICANCE: ADULT RISK DECISIONS

Increase in white matter = PFC

Maturity (Giedd, J.N., 2008. The teen brain: Insights from neuroimaging. J Adolesc Health 42, 335-343)

> PFC maturity achieved in early

adulthood (Yurgelun-Todd, D., 2007. Emotional and cognitive changes during adolescence. Curr Opin Neurobiol 17, 251-257)

0

> Adults—Less difficulty with:

- ➤Decision-making >Impulse control
- >Delay of gratification
- >Emotional regulation
- ➤Attention

Long-range planning (Ellis, L., 2005. A theory explaining biological correlates of criminality. Eur J Criminol 2(3), 287-315)

BACKGROUND/SIGNIFICANCE: **OPTICAL IMAGING (FNIRS)**

> Functional Near-

Infrared Spectroscopy ➤ Non-invasive

Laser diodes

Stimuli-evoked

changes in oxygenated

and deoxygenated Hgb

concentrations

> Targeted cortical and prefrontal regions of

interest

Comparable to BOLD

findings in fMRI

METHODS Correlational blocked design Block 1 Block 2 Block 15 Examined oxygenated Hgb (HbO) changes in PFC of 40 right-handed

healthy adults

>25 to 44 years of age (mean 28.8 yrs) >23 males; 17 females

≻70% college degree: 63% engineers

>Normal or corrected-to-normal visio

➢BP measurement (mean 119/67)

Ine-Way Analysie of Variance (ANOVA) Usependent Samples Mann-Winkny U Test BEHAVIORAL BART DATA				
Behavioral Data	Total Group (n=40) Mean (SD) Range	Males (n-23) Mean (SD) Range	Females (n=17) Mean (SD) Range	Gender Differences
Total # of "win" balloonsActive	7.0 (2.7) 1-12	6.3 (2.6) 1-10	7.9 (2.7) 3-12	F(1,38) = 3.5; $p = 0.07^{a}$
Total # of "lose" balloons—Active	8.0 (2.7) 3-14	8.7 (2.6) 5-14	7.1 (2.7) 3-12	F = (1,38) = 3.5; = 0.07 ^a
Average adjusted inflations/"win" balloon—Active	6.0 (1.2) 3-10	6.1 (1.4) 3-10	5.8 (0.94) 4.5-7.4	F(1,38) = .88; $p = 0.35^a$
Average adjusted inflations/"lose" balloonActive	6.0 (1.5) 1.5-9.6	6.5 (1.2) 4.4-9.6	5.2 (1.6) 1.5-8.4	U = 103.5; z = -2.52; $p = 0.01^{b}$

RESULTS: POWER ANALYSIS & PSYCHOMETRICS > Post hoc power analysis: > 0.9 (based on differences of HbO means between active and passive modes) > 0.6 (based on differences of male/female HbO means during active losses) > Need 30 males and 30 females to achieve power to interpret gender differences

Internal Consistency Reliability > a = 0.74

ව

CONCLUSIONS

Adult males:

- Decided to risk earnings
- Suffered more losses
- Reduced inhibitory control

Adult females:

- Demonstrated risk aversion
- Losses associated with bilateral

6

dorsolateral PFC activation

FUTURE IMPLICATIONS Contingency Management

Role of gender and age in effectiveness of Contingency Management

- Reinforcers as "wins"
- Role of risk aversion

No qualitative research has been done on gender-specific client perceptions of CM

Extend optical imaging to lifespan risk decision research of "normal" and "clinical" populations

REFERENCES

Cavallo, D. A., Nich, C., Schepis, T. S., Smith, A. E., Liss, T. B., McFetridge, A. K., & Krishan-Sarin, S. (2010). Preliminary examination of adolescent spending in a contingency management-based smootly cassation program. *Journal of Child & Adolescent management-based smootly cassation program. Journal of Child & Adolescent (Control and Control Science)*.
 Corby, E. A., Roll, J. M., Ledgerwood, D. M., & Schuster, C. R. (2000). Contingency management interventions for treating the substance abuse of adolescents: A feasibility study. *Experimental and Clinical Psychopharmacology*, *8*(3), 371-376.
 Kirby, K. C., Benishek, L. A., Leggett Dugosh, K., & Kerwin, M. L. E. (2006). Substance abuse management: Implications for dissemination. *Drug and Alcohol Dependence*, *85*, 19-27.
 Petry, N. M., Alessi, S. M., Marx, J., Austin, M. & Tardif, M. (2005). Vouchers versus prizes: Contingency management: Implications for dissemination. *Drug and Alcohol Dependence, 85*, 19-27.
 Petry, N. M., Alessi, S. M., Marx, J., Austin, M. & Tardif, M. (2005). Vouchers versus prizes: Contingency management fracturent of substance abuses in community settings. *Journal of Consulting and Clinical Psychology*, *73*(6), 1005-1014.
 Petry, N. M. & Roll, J. M. (2011). Amount of earnings during prize contingency management tertatement for substance. *Journal of Consulting and Clinical Psychology*, *68*(2), 250-257.
 Petry, N. M. & Roll, J. M. (2011). Amount of earnings during prize contingency management treatment and *Clinical Psychology*, *74*(6), 453-450.
 Petry, N. M. & Roll, J. M. (2002). Coent advances in the dissemination of contingency management techniques: Clinical and research perspectives. *Journal of Substance advances in the dissemination of Substance abuse. Amount of Substance advances*. *Experimental and Clinical Psychology*, *2*, 411-434.
 Weiss, L. M. & Petry, N. M. (2006). Contingency management for treatment of s